5 Sources & Further Readings
5.1 Content
Caldwell, C. K. (2021). Euclid's proof of the infinitude of primes (c. 300 bc). PrimePages, University Tennessee at Martin. (link)
Copeland, B. J. (2017). Colossus computer. Britannica. (link)
Cracking the code. (2019). Central Intelligence Agency. (link)
dcode. (2022). Modular exponentiation. (link)
Dunham, W. (2022). Number theory. Britannica. (link)
Harris, M. (2019). Why the proof of fermat's last theorem doesn't need to be enhanced. Quanta Magazine. (link)
Hosch, W. L. (2022). Cryptography. Britannica. (link)
Hungerford, T. W. (2012). Abstract algebra, an introduction (Third Edition). Cengage.
Lynn, B. (n.d.). Euclid's algorithm. Crypto, Stanford University. (link)
Norman, J. (2022). Blaise de vigenere describes what is later known as the vigenere cipher. History of Information. (link)
Prime factors. (2022). Bitesize by British Broadcasting Corporation. (link)
Public key cryptography. (2021). International Business Machines. (link)
Taylor, R. (2012). Modular arithmetic: Driven by inherent beauty and human curiosity. Institute for Advanced Study. (link)
Teitelbaum, J. (2021). Fermat and euler's theorems: Rsa cryptography. YouTube, University of Connecticut. (link)
Weisstein, E. W. (2022). Fundamental theorem of arithmetic. MathWorld (A Wolfram Web Resource). (link)
5.2 Images
Colossus codebreaking computer, Public domain, via Wikimedia Commons (link)
Enigma Machine in Use, By Bundesarchiv, Bild 183-2007-0705-502 / Walther / CC-BY-SA 3.0, CC BY-SA 3.0 de, (link)
Bletchley Park, By DeFacto, origional work / CC BY-SA 4.0, CC BY-SA 4.0, (link)
Modular Arithmetic Clock, Bernard Darnton (link)
The Divison Algorithm, CueMath.com (link)
Prime Factorization Tree, Berry Brett, Medium.com "Using Factor Trees to Find GCFs and LCMs" (link)