References





52 Factorial. (n.d.). Czep.net. Retrieved October 31, 2022, from https://czep.net/weblog/ 52cards.html

Agarwal, L. (2022, March 5). Origin or History of Factorial Notation. Prinsli.com. https:// prinsli.com/history-of-factorial-notation/

Maclaurin Expansion of sin(x) | The Infinite Series Module. (2020). Blogs.ubc.ca. https:// blogs.ubc.ca/infiniteseriesmodule/units/unit-3-power-series/taylor-series/maclaurin-expansion-of-sinx/

O'Connor, J. (2006, August). Christian Goldbach - Biography. Maths History. https:// mathshistory.st-andrews.ac.uk/Biographies/Goldbach/

O'Connor, J. (2012, January). Christian Kramp - Biography. Maths History. https:// mathshistory.st-andrews.ac.uk/Biographies/Kramp/

Power Series | Examples of Power Series. (n.d.). BYJUS. Retrieved October 31, 2022, from https://byjus.com/maths/power-series/

Taylor, C. (2020, February 4). Why Does Zero Factorial Equal One? ThoughtCo. https:// www.thoughtco.com/why-does-zero-factorial-equal-one-3126598

Team, C. (2021, July 28). Factorial. Corporate Finance Institute. https:// corporatefinanceinstitute.com/resources/knowledge/other/factorial/

Teixeira, R. (2017, May 3). Probably magic! Plus Maths. https://plus.maths.org/content/ probably-magic

The factorial function (article). (2022, October 31). Khan Academy. https:// www.khanacademy.org/computing/computer-science/algorithms/recursive-algorithms/a/ the-factorial-function

The power series expansion of the exponential function, Properties of the power series expansion of the exponential function. (n.d.). Www.nabla.hr. Retrieved October 31, 2022, from http://www.nabla.hr/Z_MemoHU-088.htm

Weisstein, E. W. (n.d.-a). Hyperfactorial. Mathworld.wolfram.com. Retrieved October 31, 2022, from https://mathworld.wolfram.com/Hyperfactorial.html

Weisstein, E. W. (n.d.-b). Primorial. Mathworld.wolfram.com. Retrieved October 31, 2022, from https://mathworld.wolfram.com/Primorial.html

Weisstein, E. W. (n.d.-c). Superfactorial. Mathworld.wolfram.com. Retrieved October 31, 2022, from https://mathworld.wolfram.com/Superfactorial.html

Weisstein, E. W. (n.d.-d). Taylor Series. Mathworld.wolfram.com. Retrieved October 31, 2022, from https://mathworld.wolfram.com/TaylorSeries.html