Tiana Rowley

MATH 5010

Dr. Kady Schneiter

Semester Project: References & Resources

References

Alt, H., Mehlhorn, K., Wagener, H., & Welzl, E. (1988). Congruence, similarity, and symmetries

of geometric objects. Discrete & Computational Geometry, 3(3), 237-256. Retrieved from https://link.springer.com/article/10.1007/BF02187910

Eggleton, P. J. (2001). Triangles a la fettuccine: A hands-on approach to triangle congruence

theorems. The Mathematics Teacher, 94(7). Retrieved from https://search.proquest.com/openview/87acf1ea5ecca1a79849763bd370f4d9/1?pq-origsite=gscholar&cbl=41299

Greve, S. H. (2005). A real-time coaching environment for triangle congruence proofs.

International Conference on Computer Assisted Learning, 150-157. Retrieved from https://link.springer.com/chapter/10.1007/3-540-51142-3_57

Goddijn, A. & Piljs, W. (2007). The classification of similarities: A new approach. Mathematics

Magazine, 80,(3), 215-219. Retrieved from https://www-jstor-org.dist.lib.usu.edu/stable/27643030 

Hirschhorn, D. B. (1990). Why is the SsA triangle-congruence theorem not included in

textbooks? The Mathematics Teacher, 83(5), 358-361. Retrieved from https://www.jstor.org/stable/27966706?seq=1#page_scan_tab_contents

Jones, R. T. & Peterson, B. B. (1974). Almost congruent triangles. Mathematics Magazine,

47(4), 180-189. Retrieved from https://doi.org/10.1080/0025570X.1974.11976393

Kang, M. K. (2010). A study on the comparison of triangle congruence in Euclidean geometry.

Korean Society of Mathematical Education, 49(1), 53-65. Retrieved from http://www.koreascience.or.kr/article/JAKO201017337333298.page

Laczkovich, M. (2012). Tilings of convex polygons with congruent triangles. Discrete and

Computational Geometry, 48(2), 330-372. doi: 10.1007/s00454-012-9404-x

Leung, K. C., Ding, L., Leung, A. Y. L., & Wong, N. Y. (2014). Prospective teachers’

competency in teaching how to compare geometric figures: The concept of congruent triangles as an example. Journal of Korean Society of Mathematical Education, 18(3), 171-185. Retrieved from htttp://dx.doi.org/10.7468/jksmed.2014.18.3.171

Matsuura, R. (2012). Approximating 𝜋 using similar triangles. Mathematics Teacher, 105(8),

632-636. Retrieved from https://www-jstor-org.dist.lib.usu.edu/stable/10.5951/mathteacher.105.8.0632 

Mauldon, J. G. (1966). Similar triangles. Mathematics Magazine, 39(3), 165-174. Retrieved from

https://doi.org/10.1080/0025570X.1966.11975709

Prasetya, R. P. & Utaminingrum, F. (2017) Triangle similarity approach for detecting eyeball

movement. 5th International Symposium on Computational and Business Intelligence, 37-40. Retrieved from https://ieeexplore.ieee.org/abstract/document/8053540

Ryoti, D. (1966). Congruency of triangles by AAS. The Mathematics Teacher, 59(3), 246-247.

Retrieved from https://www-jstor-org.dist.lib.usu.edu/stable/27957323 

Sanders, W. J. & Dennis, J. R. (1968). Congruence geometry for junior high school. The

Mathematics Teacher, 61(4), 354-369. Retrieved from

https://www.jstor.org/stable/27957846

Seago, N., Jacobs, J., Driscoll, M., Nikula, J., Matassa, M., & Callahan, P. (2013). Mathematics

Teacher Educator, 2(1), 74-85. Retrieved from https://www-jstor-org.dist.lib.usu.edu/stable/10.5951/mathteaceduc.2.1.0074 

Simons, S. (2009). Introducing congruent triangles. The Mathematical Gazette, 93(526),

142-142. Retrieved from https://www-jstor-org.dist.lib.usu.edu/stable/40378691 

Swetz, F. J. (2012). Similarity vs. the “in-and-out complementary principle”: A cultural faux pas.

Mathematics Magazine, 85(1), 3-11. Retrieved from https://www-jstor-org.dist.lib.usu.edu/stable/10.4169/math.mag.85.1.3 

Taylor, D. G., (1947). On certain configurations of congruent triangles. The Mathematical

Gazette, 31(297), 270-278. Retrieved from https://www-jstor-org.dist.lib.usu.edu/stable/3609290 

Zamfirescu, C. T. (2018). Congruent triangles in arrangements of lines. Ars Mathematica

Contemporanea, 14(2), 359-373. Retrieved from http://dx.doi.org.dist.lib.usu.edu/10.26493/1855-3974.982.6d6 

Resources

Congruence and Similarity. TechnologyUK. Retrieved from

technologyuk.net/mathematics/geometry/congruence-and-similarity.shtml

Congruent Triangles. Math Open Reference. Retrieved from

        https://www.mathopenref.com/congruenttriangles.html

Congruent Polygons and the Effect that Scaling has on Area and Volume. Lake Tahoe

Community College. Retrieved from https://ltcconline.net/greenl/courses/CAHSEE/Geometry/Congruency.htm

Core Connections Integrated II Chapter 1 and 2. College Preparatory Mathematics. Retrieved

from https://ebooks.cpm.org/bookdb.php?title=int2&name=2.1.1&type=lesson

Methods of Proving Triangles Congruent. MathBitsNotebook.com. Retrieved from

        https://mathbitsnotebook.com/Geometry/CongruentTriangles/CTtriangleMethods.html

Similar Triangles. Math Open Reference. Retrieved from

https://www.mathopenref.com/similartriangles.html.

Similarity and Congruence. Maths Mutt Mathematical Resources. Retrieved from

http://www.mathsmutt.co.uk/files/simcomp.htm#targetText=Similarity%20and%20Congruence,the%20same%20shape%20and%20size.

Similarity and congruence. Nuffield Foundation. Retrieved from

https://www.nuffieldfoundation.org/key-ideas-teaching-mathematics/similarity-and-cong

ruence

Similarity Theorems! GeoGebra. Retrieved from https://www.geogebra.org/m/ZhvUHyn8

Triangle Congruence Theorems (SSS, SAS & ASA Postulates). Tutors.com. Retrieved from

        https://tutors.com/math-tutors/geometry-help/triangle-congruence-theorems-sss-sas-asa

Using similar & congruent triangles. Khan Academy. Retrieved from

https://www.khanacademy.org/math/geometry/hs-geo-similarity/hs-geo-similar-and-congruent-triangles/v/finding-area-using-similarity-and-congruence