Tiana Rowley
MATH 5010
Dr. Kady Schneiter
Semester Project: References & Resources
References
Alt, H., Mehlhorn, K., Wagener, H., & Welzl, E. (1988). Congruence, similarity, and symmetries
of geometric objects. Discrete & Computational Geometry, 3(3), 237-256. Retrieved from https://link.springer.com/article/10.1007/BF02187910
Eggleton, P. J. (2001). Triangles a la fettuccine: A hands-on approach to triangle congruence
theorems. The Mathematics Teacher, 94(7). Retrieved from https://search.proquest.com/openview/87acf1ea5ecca1a79849763bd370f4d9/1?pq-origsite=gscholar&cbl=41299
Greve, S. H. (2005). A real-time coaching environment for triangle congruence proofs.
International Conference on Computer Assisted Learning, 150-157. Retrieved from https://link.springer.com/chapter/10.1007/3-540-51142-3_57
Goddijn, A. & Piljs, W. (2007). The classification of similarities: A new approach. Mathematics
Magazine, 80,(3), 215-219. Retrieved from https://www-jstor-org.dist.lib.usu.edu/stable/27643030
Hirschhorn, D. B. (1990). Why is the SsA triangle-congruence theorem not included in
textbooks? The Mathematics Teacher, 83(5), 358-361. Retrieved from https://www.jstor.org/stable/27966706?seq=1#page_scan_tab_contents
Jones, R. T. & Peterson, B. B. (1974). Almost congruent triangles. Mathematics Magazine,
47(4), 180-189. Retrieved from https://doi.org/10.1080/0025570X.1974.11976393
Kang, M. K. (2010). A study on the comparison of triangle congruence in Euclidean geometry.
Korean Society of Mathematical Education, 49(1), 53-65. Retrieved from http://www.koreascience.or.kr/article/JAKO201017337333298.page
Laczkovich, M. (2012). Tilings of convex polygons with congruent triangles. Discrete and
Computational Geometry, 48(2), 330-372. doi: 10.1007/s00454-012-9404-x
Leung, K. C., Ding, L., Leung, A. Y. L., & Wong, N. Y. (2014). Prospective teachers’
competency in teaching how to compare geometric figures: The concept of congruent triangles as an example. Journal of Korean Society of Mathematical Education, 18(3), 171-185. Retrieved from htttp://dx.doi.org/10.7468/jksmed.2014.18.3.171
Matsuura, R. (2012). Approximating 𝜋 using similar triangles. Mathematics Teacher, 105(8),
632-636. Retrieved from https://www-jstor-org.dist.lib.usu.edu/stable/10.5951/mathteacher.105.8.0632
Mauldon, J. G. (1966). Similar triangles. Mathematics Magazine, 39(3), 165-174. Retrieved from
https://doi.org/10.1080/0025570X.1966.11975709
Prasetya, R. P. & Utaminingrum, F. (2017) Triangle similarity approach for detecting eyeball
movement. 5th International Symposium on Computational and Business Intelligence, 37-40. Retrieved from https://ieeexplore.ieee.org/abstract/document/8053540
Ryoti, D. (1966). Congruency of triangles by AAS. The Mathematics Teacher, 59(3), 246-247.
Retrieved from https://www-jstor-org.dist.lib.usu.edu/stable/27957323
Sanders, W. J. & Dennis, J. R. (1968). Congruence geometry for junior high school. The
Mathematics Teacher, 61(4), 354-369. Retrieved from
https://www.jstor.org/stable/27957846
Seago, N., Jacobs, J., Driscoll, M., Nikula, J., Matassa, M., & Callahan, P. (2013). Mathematics
Teacher Educator, 2(1), 74-85. Retrieved from https://www-jstor-org.dist.lib.usu.edu/stable/10.5951/mathteaceduc.2.1.0074
Simons, S. (2009). Introducing congruent triangles. The Mathematical Gazette, 93(526),
142-142. Retrieved from https://www-jstor-org.dist.lib.usu.edu/stable/40378691
Swetz, F. J. (2012). Similarity vs. the “in-and-out complementary principle”: A cultural faux pas.
Mathematics Magazine, 85(1), 3-11. Retrieved from https://www-jstor-org.dist.lib.usu.edu/stable/10.4169/math.mag.85.1.3
Taylor, D. G., (1947). On certain configurations of congruent triangles. The Mathematical
Gazette, 31(297), 270-278. Retrieved from https://www-jstor-org.dist.lib.usu.edu/stable/3609290
Zamfirescu, C. T. (2018). Congruent triangles in arrangements of lines. Ars Mathematica
Contemporanea, 14(2), 359-373. Retrieved from http://dx.doi.org.dist.lib.usu.edu/10.26493/1855-3974.982.6d6
Resources
Congruence and Similarity. TechnologyUK. Retrieved from
technologyuk.net/mathematics/geometry/congruence-and-similarity.shtml
Congruent Triangles. Math Open Reference. Retrieved from
https://www.mathopenref.com/congruenttriangles.html
Congruent Polygons and the Effect that Scaling has on Area and Volume. Lake Tahoe
Community College. Retrieved from https://ltcconline.net/greenl/courses/CAHSEE/Geometry/Congruency.htm
Core Connections Integrated II Chapter 1 and 2. College Preparatory Mathematics. Retrieved
from https://ebooks.cpm.org/bookdb.php?title=int2&name=2.1.1&type=lesson
Methods of Proving Triangles Congruent. MathBitsNotebook.com. Retrieved from
https://mathbitsnotebook.com/Geometry/CongruentTriangles/CTtriangleMethods.html
Similar Triangles. Math Open Reference. Retrieved from
https://www.mathopenref.com/similartriangles.html.
Similarity and Congruence. Maths Mutt Mathematical Resources. Retrieved from
http://www.mathsmutt.co.uk/files/simcomp.htm#targetText=Similarity%20and%20Congruence,the%20same%20shape%20and%20size.
Similarity and congruence. Nuffield Foundation. Retrieved from
https://www.nuffieldfoundation.org/key-ideas-teaching-mathematics/similarity-and-cong
ruence
Similarity Theorems! GeoGebra. Retrieved from https://www.geogebra.org/m/ZhvUHyn8
Triangle Congruence Theorems (SSS, SAS & ASA Postulates). Tutors.com. Retrieved from
https://tutors.com/math-tutors/geometry-help/triangle-congruence-theorems-sss-sas-asa
Using similar & congruent triangles. Khan Academy. Retrieved from
https://www.khanacademy.org/math/geometry/hs-geo-similarity/hs-geo-similar-and-congruent-triangles/v/finding-area-using-similarity-and-congruence