Better Explained (n.d.). Intuitive understanding of Euler's formula [web log comment]. Retrieved from https://betterexplained.com/articles/intuitive-understanding-of-eulers-formula/

Compound interest. (n.d.). In Merriam-Webster's online dictionary. Retrieved from https://www.merriam-webster.com/dictionary/compound%20interest

Crouzet, A. (2011, March). Euler's method for the exponential function [Applet]. Retrieved from http://demonstrations.wolfram.com/EulersMethodForTheExponentialFunction/

Ellis, S. (2018, September 27). Bernoulli's compound interest problem [Applet]. Retrieved from https://www.geogebra.org/m/f8kkmg7q

Ellis, S. (2018). Geometric representation of Euler's formula [Applet]. Retrieved from https://www.geogebra.org/m/j8xzhjmw

Ellis, S. (2018). Taylor polynomial approximation of functions [Applet]. Retrieved from https://www.geogebra.org/m/vnjukvsp

Euler, L. (1731, November 25). Lettre XV [Letter]. Retrieved from http://eulerarchive.maa.org//correspondence/letters/OO0729.pdf

Euler, L. (1748). Introductio in analysin infinitorum (Vol. 1). Lipsae. Retrieved from https://gallica.bnf.fr/ark:/12148/bpt6k69587.r=introductio+in+analysin+infinitorum.langEN

Euler's Academy (2014, April 13). The history of e: Binomial theorem [Video file]. Retrieved from https://www.youtube.com/watch?v=wsvXT-jTXbk

Euler's formula for complex exponentials (n.d.). Retrieved from http://math.gmu.edu/~rsachs/m114/eulerformula.pdf

Exponential function reference (2018). Math is fun. Retrieved from https://www.mathsisfun.com/sets/function-exponential.html

Furey, E. (n.d.). Compound Interest calculator [Applet]. Retrieved from https://www.calculatorsoup.com/calculators/financial/compound-interest-calculator.php

GeoGebra Materials Team (2014, September 16). Normal distribution [Applet]. Retrieved from https://www.geogebra.org/m/W9Nz53Ct

Glaz, S. (2010). The enigmatic number e: A history in verse of its uses in the mathematics classroom. Retrieved from http://www.math.uconn.edu/~glaz/My_Articles/TheEnigmaticNumberE.Convergence10.pdf

Hayter, A. (2013). Probability and statistics for engineers and scientists (4th ed.). Boston, MA: Brooks/Cole, Cengage Learning.

Inverse functions (2017). Math is fun. Retrieved from https://www.mathsisfun.com/sets/function-inverse.html

Isotopes (2018). chem4kids.com. Retrieved from http://www.chem4kids.com/files/atom_isotopes.html

Khan Academy (2018). Modeling data distributions . Retrieved from https://www.khanacademy.org/math/statistics-probability/modeling-distributions-of-data

Khan, S. (2017, July 19). Derivative as a concept [Video file]. Retrieved from https://www.khanacademy.org/math/differential-calculus/dc-diff-intro/modal/v/derivative-as-a-concept

Khan, S. (2014, July 23). The logistic growth model [Video file]. Retrieved from https://www.khanacademy.org/math/ap-calculus-bc/bc-differential-equations-new/bc-7-9/v/logistic-differential-equation-intuition

Khan, S. (2017, July 25). Proof: The derivative of ex is ex [Video file]. Retrieved from https://www.khanacademy.org/math/ap-calculus-ab/ab-differentiation-1-new/ab-2-7/a/proof-the-derivative-of-is

Lipkin, L. & Smith, D. (2004, December). Logistic growth model - Background: Logistic modeling. Convergence . Retrieved from https://www.maa.org/press/periodicals/loci/joma/logistic-growth-model-background-logistic-modeling

Maor, E. (1994). e: The story of a number. Princeton, NJ: Princeton University Press.

Math Teacher's Resource (September 15). Derivation of continuous compound interest formula without calculus [web log comment]. Retrieved from https://blog.mathteachersresource.com/?p=603

melbapplets (2015, May 19). Logistic growth - sideways phase plot [Applet]. Retrieved from https://www.geogebra.org/m/BTo0Ux6s

Morris, R. (2011, March). Derivatives of exponential functions [Applet]. Retrieved from http://demonstrations.wolfram.com/DerivativesOfExponentialFunctions/

Morris, T. (Producer). (n.d.) In our time: e. Podcast retrieved from https://www.bbc.co.uk/radio/play/b04hz49f

Needham, T. (1998). Visual complex analysis. New York, NY : Oxford University Press.

Numberphile (2016, December 19). e (Euler's number) [Video file]. Retrieved from https://www.youtube.com/watch?v=AuA2EAgAegE

O'Connor, J.J. & Robertson, E.F. (2001, September). History topic: The number e. MacTutor History of Mathematics. Retrieved from http://www-history.mcs.st-and.ac.uk/PrintHT/e.html

Radioactive decay (n.d.). Nuclear Power. Retrieved from https://www.nuclear-power.net/nuclear-power/reactor-physics/atomic-nuclear-physics/radioactive-decay/

Relix, D. & Are, M. (2011, March). Radioactive decay of five elements: Time dependence of remaining mass [Applet]. Retrieved from http://demonstrations.wolfram.com/RadioactiveDecayOfFiveElementsTimeDependenceOfRemainingMass/

Runkle, J.D. (1859, February). Note on two new symbols. The Mathematical Monthly 1 (5), 167-168. Retrieved from https://books.google.com/books?id=IRQAAAAAMAAJ&pg=PA153&lpg=PA153&dq=mathematical+monthly+february+1859&source=bl&ots=UpuKteJXuA&sig=Sxzx36WQNsC3xLDjEzaRc-NDzoY&hl=en&sa=X&ved=2ahUKEwjF0Iaenu_eAhWGyoMKHSwFADAQ6AEwAXoECAkQAQ#v=onepage&q=mathematical%20monthly%20february%201859&f=false

Tabak, J. (2005). Probability & statistics: The science of uncertainty . New York, NY: Checkmark Books.

Taylor series (2017). Math is fun. Retrieved from https://www.mathsisfun.com/algebra/taylor-series.html

Villarreal-Calderon, R. (2008). Chopping logs: A look at the history and uses of logarithms. The Mathematics Enthusiast, 5(2), 337-343. Retrieved from https://scholarworks.umt.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1112&context=tme

Wilson, R. (n.d.). A derivation of the normal distribution. Retrieved from https://web.sonoma.edu/users/w/wilsonst/papers/Normal/default.html



Go Back to Top