
Proof of the Minimax Theorem

The proof of the minimax theorem follows the format given in Luce and Raiffa
.

Formalisms
We first characterize a two-person, zero-sum game.

1. There are two players, P1 and P2.

2. P1 has a set A = {a1, a2, . . . , am } of m pure strategies (actions).

3. P2 has a set B = {b1, b2, . . . , bn } of n pure strategies (actions).

4. Each player has a utility for each (ai , bj ) pair of actions. The utility for P1 is denoted U1(ai , bj ) and
the utility for P2 is denoted U2(ai , bj ). Since this is a zero-sum game, U1(ai , bj ) = −U2(ai , bj ) for
all i and j . To minimize the number of subscripts we will carry around, let M (ai , bj ) = U1(ai , bj )
denote the mutual utility for the game.

5. Each player can use a mixed strategy by creating a probability mass function and playing each pure
strategy with a fixed probability. Let pi denote the probability that player 1 will play action ai , and
let qj denote the probability that player 2 will play action bj . Since p and q are probabilities, they
must satisfy

(a) ∀i pi ≥ 0, ∀j qj ≥ 0 .

(b)
P m

i=1 pi = 1,
P n

j =1 qj = 1.

A mixed strategy that uses a particular probability mass function is denoted p = (p1, p2, . . . , pm )
where pi = P r(ai) is the probability that action ai will be played; similarly, for player 2 q =
(q1, q2, . . . , qn ).

6. For each randomized strategy pair (p, q), the payoff M (p, q) is defined to be

M (p, q) =
mX

i=1

nX

j =1

piM (ai , bj )qj .
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We denote the payoff when player 1 uses pure strategy ai and player 2 uses mixed strategy q as

M (ai , q) =
nX

j =1

M (ai , bj )qj

with similar notation for M (p, bj ).

7. In much the same way that A and B denote the set of pure strategies available to player 1 and 2,
respectively, we use P and Q to denote the set of all mixed strategies available to player 1 and 2,
respectively.

8. Player 1’s objective is to select a randomized strategy p from P so as to maximize M (p, q). At the
same time, player 2’s objective is to select a randomized strategy q from Q so as to maximize its
payoff, which is equivalent to minimizing M (p, q). The rules of the game require that each player
choose its strategy in complete ignorance of the opponent’s selection.

9. For each mixed strategy p belonging to P , player 1’s security level is defined to be

v1(p) = min
q

M (p, q).

Since

M (p, q) =
nX

j =1

M (p, bj )qj

is a weighted sum of the n payoffs M (p, bj ), it is minimized when all of the weight is assigned to
the least of these (do you see why? look at how we compute the maximin mixed strategy in the
lecture notes.)

v1(p) = min[M (p, b1), M (p, b2), . . . , M (p, bn )].

You can think of v1(p) as the payoff that player 1 will receive if player 2 knows that P1 will do p.
(Why? Because if player 2 knows this, then it can choose its best response.) We can define v2(q)
for player 2 in a similar way (but using maximums instead of minimums since high M means low
payoff to player 2).

10. By assumption, player 1 wants to maximize its security level, so P1 must choose a strategy p∗ such
that

v1(p∗ ) ≥ v1(p)∀p ∈ P.

Let v1 denote this maximal security level (i.e., v1 = v1(p∗ )). Then

v1 = max
p

v1(p) ≥ v1(p) (1)

for all other mixed strategies. We also know that

v1 = min
q

M (p∗ , q) ≤ M (p∗ , q)∀q ∈ Q. (2)

Inequality (1) means that the strategy that produces v1 is superior to all other strategies (in terms of
maximizing security level). Inequality (2) means that v1 is the worst (minimum payoff) that player
1 can expect; if player 2 doesn’t choose wisely then player 1 will get more than v1. The strategy p∗
is called the maximin strategy.
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11. Because the game is zero-sum, we know that when player 2 maximizes its security level then it
minimizes player 1’s payoff. If player 2 uses strategy q, 1 cannot obtain a return greater than

v2(q) = max
p

M (p, q).

The value v2 is sometimes called regret, which kind of indicates that it is the negation of security.
Just like player 1 tries to maximizes security, player 2 tries to minimize regret. Define

q∗ = arg min
q

v2(q),

and define
v2 = v2(q∗ ) ≤ v2(q) ∀q ∈ Q. (3)

By repeating the analysis that we did for player 1 but with player 2 in mind, we learn that

v2 ≥ M (p, q∗ ) ∀p ∈ P. (4)

The strategy q∗ is called the minimax strategy.

12. Putting these pieces together, we learn that if player 1 uses the maximin strategy, it is guaranteed at
least v1 units of (security) payoff

v1(p) ≤ v1 ≤ M (p∗ , q) ∀q ∈ Q.

Similarly, if player 2 uses the minimax strategy, it is guaranteed to no more than v2 units of (regret)
loss, which is tantamount to guaranteeing that player 1 can receive no more than v2 units of payoff

M (p, q∗ ) ≤ v2 ≤ v2(p∗ ) ∀p ∈ P.

Thus,

M (p, q∗ ) ≤ v2 ∀p ∈ P
M (p∗ , q∗ ) ≤ v2

v1 ≤ M (p∗ , q) ∀q ∈ Q
v1 ≤ M (p∗ , q∗ )
v1 ≤ v2. (5)

13. A pair of strategies (p0, q0) is said to be in equilibrium if p0 is good against q0 and vice versa,
meaning

M (p, q0) ≤ M (p0, q0) ≤ M (p0, q).

In words, these two strategies are in equilibrium if neither player has an incentive to change (can
increase its payoff by unilaterally changing its behavior). To help understand this, it is useful to
recall that a Nash equilibrium is a solution pair such that no player has an incentive to unilaterally
change his or her action.

Whew! That’s quite a bit of information, but its nothing more than a formalism of the concepts we’ve
been talking about informally. Since one of my goals for this course is to help you get confident about
reading the literature, I want you to practice putting your thoughts into a concise, mathematical language.
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A Useful Theorem
We now turn to an interesting theorem. The theorem states that (a) if an equilibrium exists then the
maximin value v1 equals the minimax value v2, (b) if v1 = v2 then there exists a real number v and a pair
of strategies p∗ and q∗ such that the payoffs for these strategies are bounded by v, and (c) if the conditions
just mentioned hold then the game has an equilibrium. The theorem does not state that each zero-sum, two-
person game satisfies any of these conditions; it only says that if it does then the maximin and minimax
solutions are equilibrium solutions. Although we will state the theorem, we will omit the proof of this
theorem (it follows almost immediately from our problem specification above) so that we can concentrate
on the proof of the minimax theorem. I should point out that many useful theorems have a form similar
to this one; they show that several different conditions are equivalent. These theorems are very servicable
because they allow us to tie a handful of mixed ideas into an equivalence. The proof of these theorems
usually follows a procedure wherein we show that condition 1 implies condition 2, condition 2 implies
condition 3, and so on until we can show that condition ` implies condition 1.

Theorem 1 For two-person, zero-sum games as we have presented them, each of the following three
conditions implies the other two.

1. An equilibrium pair exists.

2.

v1 = max
p

min
q

M (p, q) = min
q

max
p

M (p, q) = v2.

3. There exists a real number v, a mixed strategy p∗ , and a mixed strategy q∗ such that

(a)
P

i M (ai , bj )p∗i ≥ v for j = 1, 2, . . . , n

(b)
P

j M (ai , bj )q∗j ≤ v for i = 1, 2, . . . , m .

Note that condition 3(3a) says that the average loss for player 2 using any pure strategy is no less than v.
Similarly, condition 3(3b) says that the average loss for player 1 using any pure strategy is no greater than
v.

The Minimax Theorem
Theorem 2 For every two-person, zero-sum game, there exists an equilibrium strategy.

Proof: Consider a transformation T that maps mixed strategy pairs (p, q) into mixed strategy pairs
T (p, q) = (p0, q0). What we’ll show is that this transformation T has the following two properties:

1. p∗ and q∗ are optimal (i.e., maximin and minimax) strategies if and only if T (p∗ , q∗ ) = (p∗ , q∗ ).
(Any point which is mapped to itself under a transformation is called a fixed point of this transfor-
mation. For example, consider the transformation T : <+ 7→<+ defined as T (x ) = x 2. The value
of x = 1 is a fixed point since T (1) = 12 = 1.)

2. T , defined below, has at least one fixed point.
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In essence, ci(p, q) represents the improvement to player 1 for switching from strategy p to strategy ai .
Similarly, di(p, q) represents the improvement to player 2 for switching from strategy q to strategy bj .

We define T as follows. Let

ci(p, q) =

1
2 M (ai , q) − M (p, q) if M (ai , q) − M (p, q) > 0

0 otherwise;

di(p, q) =

1
2 M (p, q) − M (p, bj ) if M (p, q) − M (p, bj ) > 0

0 otherwise;

Using the notation T (p, q) = (p0, q0), we define

p0
i =

pi + ci(p, q)
1 +

P m
k =1 ck (p, q)

q0
i =

qi + di(p, q)
1 +

P n
k =1 dk (p, q)

.

First, we want to show that T : P × Q 7→P × Q (i.e. that the things produced by the transformations
are probabilities), so we need to show that p0 and q0 are probability mass functions. Clearly, since ci and
di are both positive then p0

i and q0
i are also both nonnegative. (Recall that probabilities cannot be negative.)

The next requirement is that these probabilities sum to one. Since

mX

i=1

p0
i =

mX

i=1

pi + ci(p, q)
1 +

P m
k =1 ck (p, q)

=
P m

i=1 pi +
P m

i=1 ci(p, q)
1 +

P m
k =1 ck (p, q)

=
1 +

P m
i=1 ci(p, q)

1 +
P m

k =1 ck (p, q)
= 1.

If you look carefully at the statement of the first property of the transformation, you’ll see an if and
only if A then B statement. Most of you remember this, but just in case you don’t, the way you establish
such a statement is first showing the if A then B part and then showing the if B then A part. We’ll start by
showing that if p∗ and q∗ are optimal then T (p∗ , q∗ ) = (p∗ , q∗ ). Observe that ci(p, q) is a measurement
of the amount that ai is better than p (if at all) as a response against q. Similarly, di(p, q) is a measurement
of the amount that bi is better than q (if at all) as a response against p. When p∗ and q∗ are optimal, it
follows that ci(p∗ , q∗ ) = 0 for all i (can you see why?) so p∗i = pi for all i. Similary, q∗i = qi . Thus,
T (p∗ , q∗ ) = (p∗ , q∗ ).

Turning to the only if portion of the proof, suppose that (p, q) is a fixed point. We need to show that
(p, q) is optimal. We first show that there exists an i such that both pi > 0 and ci(p, q) = 0. Since, by
definition (in class, ask me about how convex combinations can be graphically depicted),

M (p, q) =
mX

i=1

piM (ai , q)
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we conclude that M (p, q) < M (ai , q) cannot be true for all i such that pi > 0. To see this, we’ll do a
mini-proof within this proof. Suppose that, ∀i such that pi > 0, M (p, q) < M (ai , q). Then

M (p, q) =
mX

i=1

piM (ai , q)

>
mX

i=1

piM (p, q)

= M (p, q)
mX

i=1

pi

= M (p, q).

This is a contradiction, so there for at least one pi > 0 it must follow that M (p, q) ≥ M (ai , q). This ends
our mini-proof. We will now use this to show that fixed points are optimal points.

But this implies that, for this i, 0 ≥ M (ai , q) − M (p, q) so, by definition of ck , ci(p, q) = 0 for this
i. For this i, the fact that (p, q) is a fixed point implies that

pi =
pi + 0

1 +
P m

k =1 ck (p, q)
.

Since pi > 0 for this i, it follows that
P m

k =1 ck (p, q) = 0. But the terms ck are all non-negative (by
definition), so they must all equal 0. This, in turn, means that M (p, q) ≥ M (ai , q) for all ai . Since this
is true regardless of q, it follows that no other pure or mixed strategy has higher payoff for all q. Thus,
M (p, q) ≥ M (p0, q) for all p0 and for all q so p is good against all q.

Similarly, we can show that q is good against all p, so when (p, q) is a fixed point of the transformation
T then it is also optimal.

The only thing we have to do now to complete the proof is show that the transformation T has a
fixed point. This existence follows form the Brouwer fixed-point theorem. We won’t show how the fixed
point theorem applies, but you might want to think about it a little bit. I’ll paraphrase Luce and Raiffa’s
statement of the theorem. The theorem says that any continuous transformation that maps a point of a
spheroid (or something topologically “close” to a spheroid) in a finite dimensional Euclidean space into
another point of the sphereoid has at least one fixed point. The space P × Q is topologically “close” to
a spheroid and our transformation is continuous, so we know that a fixed point exists. Any optimal point
is a fixed point, and any fixed point is an optimal point so we know that every zero-sum, two-player game
has a mixed strategy equilibrium point.

Yippee! We did it.
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