EVERY VERTEX A KING

K.B. REID

Louisiana State University. Dept. of Mathematics, Baton Rouge, LA 70803, USA

Received 22 May 1980 Revised *21* **January 1981**

A king in a tournament is a vertex which can reach every other velvex via a 1-path or 2-path. A new inductive proof is given for the existence of an *n*-tournament with exactly k kings for all integers $n \ge k \ge 1$ with the following exceptions: $k = 2$ with *n* arbitrary, and $n = k = 4$ (in which cases no such *n*-tournament exists). Also, given an *n*-tournament T , the smallest order m is determined so that there exists an *m*-tournament W which contains T as a subtournament and so that every vertex of W is a king. Bounds are obtained in a similar *problem* in which the kings **of** *W* **are exactly the vertices of T.**

In a de!ightful exposrtion on the use of tournaments to model **dominance in** flocks of chickens, S.B. Maurer [3] defined a king in a tournament T as a vertex x in T such that for every other vertex y in T , either x dominates y in T or T contains a 2-path from x to y. He proved that for all integers $n \ge k \ge 1$ there exists an *n*-tournament with exactly *k* kings with the following exceptions: $k = 2$ with *n* arbitrary, and $n = k = 4$ (in which cases no such *n*-tournament exists). The fact that no tournament has exactly two bings appears implicitly in a problem posed by D.L. Silverman [8] and solved by J.W. Moon [4] and occurs in the treatment of tournaments by F. Harary ef *al. [11. The* idea to use kings in the study of dominance in tournaments emerged from work by the mathematical sociologist H.G. Landau [2] who proved that every vertex of maximum score is a king. The purpose >f this article is to answer several questions on kings posed by Maurer [3].

If x is a vertex in a tournament, then $O(x)$ will denote the out-set of x, that is, the set of vertices dominated by x. The cardinality of $O(x)$ will be denoted by $d^+(x)$. Similarly, $I(x)$ will denote the in-set of x, those vertices deminating x, and its cardinality will be denoted by $d^-(x)$. A tournament in which every vertex is a king will be called an *all-kings tournament*. For terminology and notation not introduced here the reader is reterred to the monograph by J.W. Moon [5] or the recent survey article by L.W. Beineke and the author $[6]$.

The first result is an inductive construction (solving Problem 4 in [3]) to be used in a new proof of a result by Maurer $[3,$ Theorems 6 and 11].

Lemma 1. If there exists an all-kings n-tournament, $n \geq 4$, then there exists an all-kings $(n + 1)$ -tournament.

0012-365X/82/0000- 0000/\$02.75 C 1982 North-Holland

.

Proof. Let T be an all-kings *n*-tournament, $n \ge 4$. Let x be a vertex of T for which $d^+(x) \ge d^-(x)$; thus, $d^+(x) \ge 2$ since $n \ge 4$. Let W be the $(n + 1)$ -tournament obtained from T by adjoining to T a new vertex y such that y dominates x and each vertex in $I(x)$ and y is dominated by each vertex in $O(x)$. Let Z denote those vertices in $I(x)$ which dominate no vertex in $O(x)$. If Z is empty, then W is an all-kings $(n + 1)$ -tournament. If *Z* is not empty, then $d^-(x) - |Z| < d^+(x)$ by choice of x. That implies that there exists a vertex w in $O(x)$ so that for every arc zv with z in Z and v in $I(x) - Z$ there exists a 2-path from v to z in $T - w$. Form W' from W by reversing all the arcs between Z and w. Note that x dominates some vertex different from w. Then W' is an all-kings $(n + 1)$ -tournament. This compietes the proof.

The previous lemma is now used to give a new proof of the following result.

Theorem 2 [3]. There exists an *n*-tournament with exactly k kings for all integers $n \ge k \ge 1$, with the following exceptions: $k = 2$ with n arbitrary, and $n = k = 4$.

Proof. If $k \neq 4$ and there exists an all-kings k-tournament T, then, as in [3], an n -tournament with exactly *k* kings can be obtained from T by adjoining $n - k$ new vertices, each of which is dominated by every vertex in T and dominance among the $n - k$ new vertices is arbitrary. None of the four 4-tournaments has 4 kings, but a similar construction suffices if $k = 4$ and $n \ge 5$. It is based on the existence of a 5-tournament with exactly 4 kings (as in [3], such a tournament can be obtained by adding a fifth vertex x to the strong 4-tournament in which y and z are the vertices of score 2 and y dominates z, where x dominates exactly z). Also, no tournament has exactly two λ ₁ and x and x are two kings in a tournament and x dominates y , then any vertex of maximum score in the subtournament with vertex set $I(x)$ is a king of that subtournament (by Landau's result), hence a king in the whole tournament.

Thus, it is sufficient to treat the case $n = k \neq 2, 4$. For each odd integer $2m + 1$, $m \ge 0$, there exists a regular $(2m + 1)$ -tournament (i.e., each vertex has score m), hence each of its vertices is a king by Landau's result. For example, the rotational tournaments and, in case $2m+1$ is an odd power of a prime congruent to 3 (mod 4), the quadratic residue tournaments are regular tournaments (see $[6, p]$. 1721). By Lemma 1, the proof is complete.

The directional dual of a king is called a serf [3]. That is, a vertex is a serf if it can be reached by every other vertex via a 1-path or 2-path. Thus, x is a king of a tournament T if and only if x is a serf of \overline{T} , the converse of T. By duality and Theorem 2, there exists an *n*-tournament with exactly s serfs for all integers $n \geq s \geq 1$, with the following exceptions: $s = 2$ with n arbitrary, and $n = s = 4$.

Maurer (Problem 1 in [3]) askec to determine all 4-tuples (n, k, s, b) for which there exists an *n*-tournament with exactly k kings and s serfs such that exactly b of the kings are also serfs. Such a tournament is called a (n, k, s, b) -tournament. By directional duality, there is no loss of generality in assuming $k \geq s$. Clearly it is necessary that $n \ge k \ge s \ge b \ge 0$ and $n \ge k + s - b$. The characterization of such 4-tuples is given in the next theorem, the proof of which is too long to include here.

Theorem 3 [7, Theorem 12]. Suppose that $n \ge k \ge s \ge 0$ and $n > 0$. There exists *a (n, k, s, b)-tournament if and only it the following conditions hold:*

- (1) $n \geq k+s$.
- (2) *s#2 and kf2,*
- (3) either $n = k = s = b \neq 4$ or $n > k$ and $s > b$.
- **(4)** (n, k, s, b) is none of $(n, 4, 3, 2), (5, 4, 1, 0),$ or $(7, 6, 3, 2)$.

Maurer (Problem 2 **in** *[3))* also asked to determine those n-tournaments T which are contained in a tournament whose kings are exactly the vertices of T . Subsequently he provided a characterization which is given in the following theorem .

Theorem 4. A *zontrivial n-tournament T is contined in a tournament whose kings are the vertices of T if and only if T contains no transmitter.*

Proof. The necessity follows from the fact that any vertex x that is dominated by some other vertex must be dominated by a kirg. For, any king in the sultournament with vertex set $I(x)$ is such a king.

On the other hand, if *T* is nontrivial and has no transmitter, then $n \ge 3$. Let x_1, \ldots, x_n denote the vertices of *T*, and let *T'* denote an isomorphic, disjoint copy of *T* with vertices x'_1, \ldots, x'_n where x'_i corresponds to x_i , $1 \le i \le n$. Form *W* from T and T' where each vertex of T dominates each vertex of T' except x_i' dominates x_i , $1 \le i \le n$. Then each x_i is a king of W, but no x_i is a king of W since **x** is not a transmitter of T, $1 \le i \le n$. The proof is complete.

Note that in the proof of the sufficiency the order of W is $2n$ for $n \ge 3$, but this is not best possible in the sense that a W of smaller order can be obtained. For example, if T is the strong 4-tournament. then it is easy to find a 5-tournament W so that the kings of W are exactly the vertices of T .

If T is a nontrivial tournament without a transmitter, let $m(T)$ denote the least order of a tournamer *(* which contains T and whose kings are exactly the vertices of T. By the preceding remarks, $m(T) = 5$ for the strong 4-iournament T.

In order to discuss a lower bound on $m(T)$ (for non-trivial T without a transmitter), some notation will be needed. Let T be any *n*-tournament with vertex set V. Let V_1 denote the set of kings of T, and, inductively, let V_i = $\{x \in V - (V_1 \cup \cdots \cup V_{i-1})\}$ for each $y \in V - (V_1 \cup \cdots \cup V_{i-1})$, $y \neq x$, there is a 1path or 2-path in T from x to y, $2 \le i \le n$. Let $p = p(T)$ denote the largest index such that V_p is nonempty. Then V_i is nonempty for $1 \le i \le p$, and $p = 1$ if and only if each vertex of T is a king. For example, if T is the transitive *n*-tournament, then $p(T) = n$ as each V_i is a singleton.

Lemma 5. Let T be an n-tournament, and let V_i , $1 \le i \le p = p(T)$, be as above. *Then for each i,* $2 \le i \le p$, and for each v_i *in* V_i *there exist vertices* v_i *in* V_i , $1 \leq j \leq i-1$, *such that* $O(v_i) \subseteq O(v_{i-1}) \subseteq \cdots \subseteq O(v_1)$.

The proof is a straightforward induction on *i*, $2 \le i \le p$, so it will be omitted.

In the following if T is a tournament, then $\{\log_2 p(T)\}\$ will be denoted by $l(T)$, or by l if no confusion will result, where $\{x\}$ denotes the smallest integer greater than or ecual to x .

The next theorem not only yields a lower bound for the order of the tournament whose existence is guaranteed by Theorem 4, but also yields a lower bound in a similar problem to be subsequently treated.

Theorem 6. If T is an n-tournament which is a subtournament of an m*tournament W and each vertex of T is a king of W, then* $m \ge n + l(T)$ *.*

Proof. The result clearly holds if $p(T) = 1$. So, suppose that T and W are as in the statement of the theorem and that $p = p(T) > 1$. Let v_p be a vertex in V_p , and let v_1, \ldots, v_{n-1} be as in Lemma 5. Denote the vertex set of T by *V*. If v_i and v_i dominate the same subset of vertices in $W - B$, for some *i* and *j*, $1 \le i \le j \le p$, then no vertex in $W-V$ is used in any 1-path or 2-path from v_i to v_i . But, v_i is a king in *W*, so there exists a vertex z in *V* such that z is in $O(v_i)$ and v_i is in $O(z)$. But, by Lemma 5, z is in $O(v_i)$, contradicting the asymmetry of T. Thus, no two v_i dominate the same subset of vertices in $W - V$, and $p \le 2^{m-n}$. Thus, $m \ge n + l(T)$.

Corollary 7. If T is a nontrivial n-tournament without a transmitter, then $\mu + l(T) \leq$ $m(T) \leq 2n$.

Problem. Given an *n*-tournament T without a transmitter, improve the bounds in Corollary 7 on $m(T)$.

A problem similar to the previous one is to characterize those *n*-tournaments T for which there exists an all-kings m-tournament *W* such that T is a subtournament of W. In fact, every *n*-tournament T has this property. For, if $p(T) = 1$, then take $W = T$. If $p(T) > 1$, there exists an $(n + 1)$ -tournament T' which contains T as a subtournament and $p(T') < p(T)$. T' can be obtained from T by adjoining a new vertex z so that z is dominated by exactly those vertices in $V_2 \cup U_1$, where $U_1 = \{x \in V_1 | x$ is dominated by every vertex in $V_2\}$ and V_1, V_2, \ldots, V_p are as in the o. finition of $p(T)$. Then Lemma 5 implies that each vertex of V_2 is dominated by some vertex of V_1 , so that the set of kings of T' is $V_1 \cup V_2 \cup \{z\}$ and $p(T') < p(T)$. By repeating this construction, if necessary, W is obtained. Of **coarse,** $m \ge n + l(T)$ **is Theorem 6. In fact. this lower bound can be achieved in** the present problem by suitably modifying the construction just given.

Theovem 8. Let *T* be an n-tournament. Then the least order of an all-kings *tournument which contains T is* $n + l(T)$ *.*

Proof. The proof will proceed by induction on $l(T)$. Note that $l(T) = 0$ if and only \mathbf{F}_k $p(T) = 1$, in which case T itself is an all-kings tournament. Assume that the theorem is true for tournaments Z for which $l(T) < k$, where $k \ge 1$, and suppose that *T* is an *n*-tournament for which $l(Z) = k$. Let $V_i = V_i(T)$, $1 \le i \le p(T)$, be as in the definition of $p = p(T)$ above, where the functional notation will be used when needed to emphasize the dependence on the tournament under consideration. Let $U_i = \{x \in V_i \mid x \text{ is dominated by every vertex in } V_{i+1}\}\$. $i \le i \le p-1$. Then $U_i \neq V_i$ by definition of V_{i+1} , $1 \le i \le p-1$. Note that no vertex in U_i dominates every vertex in $V_i - U_i$, as otherwise each vertex in V_{i+1} can reach each vertex in *V_i* via a 1-path or a 2-path, a contradiction to the definition of V_{i+1} , $1 \le i \le p-1$.

Form an $(n + 1)$ -tournament T_1 by adjoining to T a new vertex z such that z dominates exactly the vertices in

$$
\bigcup \{V_i-U_i \mid 1 \le i \le p-1, i \text{ odd}\} \cup W,
$$

where

 $W = \begin{cases} V_p, & \text{if } p \text{ is odd} \end{cases}$ \emptyset , if p is even.

Now, z is a king of $T₁$. For let x be any vertex of T which is not dominated by z. If x is in U_i for some odd i, $1 \le i \le p - 1$, then as noted above, there is a vertex in $V_i - U_i$ on a 2-path from z to x. If x is in V_i for some even $i, 2 \le i \le p$, then as no vertex of V_i contains every vertex in V_{i-1} , there is some vertex in $V_{i-1} - U_{i-1}$ which is on a 2-path from z to x .

In addition, each vertex of V_1 is a king of T_1 . For, each vertex of V_1 is a king of *T*, each vertex of $U_1 \cup V_2$ dominates z, and by the definition of U_1 , from each vertex of $V_1 - U_1$ there is a 2-path to z which includes a vertex of V_2 .

Note that from each vertex of V_i , *i* even, to each vertex of $V_{i-1} - U_{i-1}$ there is a 2-path using z, $2 \le i \le p$, ar d each vertex of V_i , *i* even, dominates every vertex of U_{i-1} , $2 \le i \le p$. In particular, each vertex of V_2 is a king of T_1 .

Consequently, $\{z\} \cup V_1(T) \cup V_2(T) \subseteq V_1(T_1)$. If $p(T) = 2$, clearly these two sets are equal. If $p(T) > 2$, then these two sets are equal by Lemma 5. Moreover, by the previous paragraph and Lemma 5, if $p(T) > 2$, then

$$
V_i(T_1) = V_{2i-1}(T) \cup V_{2i}(T), \quad 1 \le j \le \{\frac{1}{2}(p-1)\}.
$$

and if p is odd, $V_{(p+1)/2}(T_1) = V_p(T)$. Hence,

 $p(T_1) = \{ \frac{1}{2}p(T) \}$ and $l(T_1) = k - 1$.

By the induction hypothesis there exists an all-kings m -tournament W such

that T_1 is a subtournament of W and

$$
m = (n+1) + l(T_1).
$$

So T is a subtournament of W and

 $m=(n+1)+(k-1)=n+l(T).$

By induction and Theorem 6, the result follows.

The worst case in the previous theorem occurs when T is transitive.

Theorem 9. The smallest order of an all-kings tournament which contains the *transitive n-tournament is 2n.*

Remark. If T has no transmitter, then it may be possible to add 'a few' vertices to W constructed in the proof of Theorem 8 to obtain an all-kings tournament, thus improving the upper bound in Corollary 7 . Some facts about W that might prove useful are: $V_p \cup U_{p-1}$ dominates all of z_1, \ldots, z_k ; the subtournament of W with vertex set $\{z_1, \ldots, z_k\}$ is transitive and z_i dominates z_i if and only if $1 \le i \le j \le k$; every A- path or 2-path in W from any vertex of V to any vertex of $V_p \cup U_{p-1}$ lies entirely in T.

Acknowledgement

The author would like to acknowledge several helpful comments of the referee that improved the exposition.

References

- [1] F. Harary, R.Z. Norman and D. Cartwright Structural Models: An Introduction to the Theory or Directed Graphs (J. Wiley, New York, 1965) 294.
- [2] E.G. Landau, On dominance relations and the structure of animal societies: 1. Effect of inherent characteristics, Bull. Math. Biophys. 13 (1951) 1-19, II. Some effects of possible social factors, Bull. Math. Biophys. 13 (1951) 245-262, III. The condition for a score structure, Bull. Math. Biophys. 15 (1953) 143-148.
- [3] S.B. Maurer, The King Chicken Theorems, Math. Mag. 53 (1980) 67-80.
- (4) J.W. Moon, Solution to Problem 46', Math. Mag. 35 (1962) 189.
- 151 J.W. Moon, Topics on Tournament: (Holt, Rillehart, and Winston, New York. 1968).
- [6] K.B. Reid and L.W. Beineke, Tournaments, Chapter 7 in: L.W. Beineke and R. Wilson, eds., Selected Topics in Grap' fheory (Academic Press, New York, 1979).
- [7] K.B. Reid, Tournaments .ith prescribed numbers of kings and serfs, Congressus Numerantium. Vol. 29, Proc. 11th S.-E. Conf. Combinatorics, Graph Theory, and Computing (Utilitas Mathematics, Winnipeg, 1980) 809-82h.
- [8] D.L. Silverman, Problem 463, Math. Mag. 35 (1962) 189.