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A king in a tournament is a vertex which can reach every other vei «ex via a 1-path or 2-path.
A new inductive proof is given for the existence of an n-tournament with exactly k kings for all
integers n = k = 1 with the following exceptions: k = 2 with n arbitrary, and n = k =4 (in which
cases no such n-tournament exists). Also, giveni an n-tournament T, the smallest order m is
determined so that there exists an m-tournament W which contains T as a subtournament and
so that every vertex of W is a king. Bovnds are obtained in a similar sroblem in which the kings
of W are exactly the vertices of T.

In a delightful exposition on the use of tournaments to model dominance in
flocks of chickens, S.B. Maurer [3] defined a king in a tournument T as a vertex x
in T such that for every other vertex y in T, either x dominates y in T or T
contains a 2-path from x to v. He proved that for al! integers n=k =1 there
exists an n-tournament with exactly k kings with the following exceptions: k =2
with n arbitrary, and n = k =4 (in which cases no such n-tournament exists). The
fact that no tournament has exactly two kings appears implicitly in a problem
posed by D.L. Silverman [8] and solved by J.W. Moon [4] and occurs in the
treatment of tournzaments by F. Harary et al. [1]. The idea to use kings in the
study of dominance in tournaments emerged from work by the mathematical
sociologist H.G. Landau [2] who proved that every vertex of maximum score is a
king. The purpose >f this article is to answer several questions on kings posed by
Maurer [3]. .

If x it a vertex in a tournament, then O(x) will denote the out-set of x, that is,
the set of vertices dominated by x. The cardinality of O(x) will be denoted by
d*(x). Similarly, I(x) will denote the in-set of x, those vertices dcminating x, and
its cardinality will be denoted by d (x). A tournament in which every vertex is a
king will be called an all-kings tournament. For terminology and notation not
introduced here the reader is reterred to the monograg h by J.W. Mocn [5] or the
recent survey article by L.W. Beireke and the author [6].

The first result is an inductive construction (solving Problem 4 in [3]) to be used
in a new proof of a result by Maurer [3, Theorems 6 and 11].

Lemma 1. If there exists an all-kings n-tournament, n=4, then there exists an
all-kings (n+ 1)-tournament.
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Proof. Let T be an all-kings n-tournzment, n=4. Let x be a vertex of T for
which d*(x)=d (x); thus, d*(x)=2 since n=4. Let W be the (n + 1)-tournament
obtained from T by adjoining to T a new vertex y such that y dominates x and
each vertex in I(x) and y is dominated by each vertex in O(x). Let Z denote
those vertices in I(x) which dominate no vertex in O(x). If Z is empty, then W is
an all-kings (n+ 1)-tournament. If Z is not empty, then d (x)—|Z <Za*(x) by
choice of x. That implies that there exists a vertex w in O(x) so that for every arc
zv with z in Z and v in I(x)—Z there exists a 2-path from v to z in T —w. Form
W' from W bv reversing all the arcs between Z and w. Note that x dominates
some vertex different from w. Then W' is an all-kings (n + 1)-tournament. This
compietes the proof. ‘

The previous lemma is now used to give a new proof of the following result.

Theorem 2 [3]. There exists an n-tournament with exactly k kings for all integers
n=k =1, with the following excepticns: k =2 with n arbitrary, and n =k = 4.

Proof. If k# 4 aad there exists an all-kings k-tournament T, then, as in [3], an
n-tournament with exactly k kings can be obtained from T by adjoining n—k
new vertices, eack. of which is dominated by every vertex in T and dominance
among the n —k new vertices is arbitrary. None of the four 4-tournaments has 4
kings, but a similar construction suffices if k=4 and n=S5. It is basec on the
existe.ice of a 5-tournameni with exactly 4 kings (as in [3], such a tournament can
be obtained by adding a fifth vertex x to the strong 4-tournament in which y and
z are the vertices of score 2 and y dominates z, where x dominates exactly z).
Also, no tournainent has exactly two lL.ags, for if x and y are two kings ir a
tournament and x dominates y, then any vertex of maximum score in the
subtournament with vertex set I(x) is a king of that subtournament (by Landau’s
result), hence a king in the whole tournament.

Thus, it is sufficient to treat the case n = k# 2, 4. For each odd integer 2m + 1,
m =0, there exists a regular (2m + 1)-tournament (i.e., each vertex has score m),
hence each of its vertices is a king by Landau’s result. For example, the rotational
tournaments and, in case 2m+1 is an odd power of a prime congruent to 3
(mod 4). the quadratic residue tournaments are regular tournameris (see [6, p.
172]). By Lemma 1, the proof is complete.

The directional dual of a king is called a serf [3]. That is, a vertex is a serf if it
can be reached by every other vertex via a 1-path or 2-path. Thus, x is a king of a
iournament T if and only if x is a serf of T, the converse of T. By duality and
Theorem 2, there exists an n-tournament with exactly s serfs for all integers
n=s=1, with the following exceptions: s =2 with n arbitrary, and n=s=4.

Maurer (Problem 1 in [3]) askec to determine all 4-tuples (n, k, s, b) for which
there exists an n-tcurnament with exactly & kings and s serfs such that exactly b
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of the kings are also serfs. Such a tournament is called a (n, k, s, b)-tournament.
By directiona! duality, there is no loss of generality in assuming k =s. Clearly it is
necessary that n=k=s=b=0 and n=k +s—b. The characterization of such
4-tuples is given in the next theorem, the proof of which is too long to irclude
here.

Theorem 3 [7, Theorem 12). Suppose thatn=k=s=b=0 and n>0. There exists
a (n, k, s, b)-tournament if and only if the following conditions hold:

() n=k+s—b,

(2) s#2 and k#2,

(3) eithern=k=s=b#4 orn>k ard s> b,

(4) (n, k. s, b) is none of (n,4,3,2), (5,4,1,0), or (7,6, 3,2).

Maurer (Problem 2 in [3]) also asked to determine those n-tournaments T
which are contained in a tournament whose kings are exactly the vertices of T.
Subsequently he provided a chiracterization which is given in the following
theorem.

Theorem 4. A nontrivial n-towrnament T is contined in a tournament whose kings
are the vertices of T if and only if T contains no transmitter.

Proof. The necessity follows from the fact that any vertex x that is dominated by
some other vertex must be dominated by a kirg. For, any king in the subtourna-
ment with vertex set I(x) is such a king.

On the other hand, if T is nontrivial and kas no transmitter, then n=3. Let
Xi.. .., X, ucnote the vertices of T, and let T’ wenote an isomorphic, disjoint copy
of T with vertices x}, ..., x, where x! corresponds to x;, | <1=<n. Form W from
T and T where each vertex of T dominates each vertex of T’ except x!
dominates x;, 1 <i<n. Then each x; is a king of W, but no x/ is a king of W since
x; is not a transmitter of 7, 1=<<i=<n. The proof is complete.

Note that in the proof of the sufficiency the order of W is 2n for n =3, but this
is not best possible in the sense that a W of smaller order can be obtained. For
example, if T is the strong 4-tournament. then it is easy to find a 5-tournament W
so that the kings of W are exactly the vertices of T.

If T is a nontrivial toarnament withou: a transmitter, let m(T) denote the least
order of a tournamer ¢ which contains T and whose kings are exactly the vertices
of T. By the precediug remarks, m(T) =5 for the strong 4-wurnament T.

In order to discuss a lower bound on m(T) (for non-trivial T without a
transmitter), some notation will be needed. Let T be any r-tournament with
vertex set V. Let V, denots the set of kings of T, and, inductively, let V=
{xe V—(V,U---UV,_)|for each ye V=-(V,U---UV,_)), y#x there is a 1-
path or 2-path in T from x to y}, 2<i<n. Let p = p(T) denote the largest index
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such that V, is nonempty. Then V, is nonempty for 1<i<p, and p=1if and only
if each vertex of T is a king. For example, if T is the transitive n-tournament,
then p(T)=n as each V, is a singleton.

Lemma 5. et T be an n-tournament, and let V,, 1<i<p=p(T), be us above.
Then for ecch i,2<i<p, and for each v, in V, there exist vertices v; in V,
1sj=<i—1, such that O(v)) = O(v;. )&+ < O(vy).

The proof is 1 straightforward induction on i, 2<i<p, so it will be omitted.

In the following if T is a tournament, then {log, p(T)} will be denoted by I(T),
or by | if no confusion will result. where {x} denotes the smallest integer greater
than or ecual ‘0 x.

The next theorem not only yields a lower bound for the order of the tourna-
ment whose existence is guaranteed by Theorem 4, but also yields a lower bound
in a similar problem to be subsequently treated.

Theorem 6. ’f T is an n-tournamen: which is a subtournament of an m-
tournament W and each vertex of T is a king of W, ther m=n+I1(T).

Proof. The result clearly holds if p(T) = 1. So, suppose that T and W are as in the
statement of the theorem and that p = p(T)> 1. Let v, be a vertex ir V,, and let
vy,-.., 0, be as in Lemma 5. Denote the vertex set of T by V. If v; and v,
dominate the same subset of vertices in W— B, for some i and j, 1 <i<j<p, then
no vertex in W—V is used in any 1-path or 2-path from v; to v;. But, v, is a king
in W, so the.e exists a vertex z in V such that z is in O(y;) and v; is in O(z). But,
by Lemma 5, z is in O(v;), contradicting the asymmetry of T. Thus, no two v,
dominate the same subset of vertices in W—V, and p<2" " Thus, mz:n+[(T).

Corollary 7. If T is a nontrivial n-tournament without a transmitter, then 1+ 1(T)<
m(T)<2n.

Problem. Given an n-tournament T without a transmitter, improve the bounds in
Corollary 7 on m(T).

A problem similar to the previous one is to characterize those n-tournaments T
for which there exists an ail-kings m-tournament W such that T is a subtourna-
ment of W. In fact. every n-tournament T has this property. For, if p(T) = 1, then
tuke W =T. If p(T)> 1, there exists an (n + 1)-tournament T’ which contains T as
a subiourirasnent and p(T") <p(T). T' can be obtained from T by adjoining a new
vertex z so that z is dominated by exactly those vertices in V,U U,, where
U,={xe V| x is dominated by every vertex in V,} and V. V,,..., V, are as in
the a-finition of p(T). Then Lemma 5 implies that each vertex of V, is dominated
by som= vertex of V,, so that the set of kings of T' is V,UV,U{z} and
p(T)<p‘T). By repeating this construction, if necessary, W is obtained. Of



Every vertex a king 97

coarse, m=n+I(T) t.,y Theorem 6. In fact. this lower bound can be achieved in
the nresent pioblem by suitably modifying the construction just given.

Theoiem 8. Let T be an n-tournament. Then the least order of an all-kings
tourncment which contains T is n+1(T).

Proof. The proof will proceed by induction on I(T). Note that [(T) =0 if and only
it p(T)=1, in which case T itself is an all-kings tournament. Assume that the
theorem is true for tournaments Z for which I[(T) <k, where k =1, and suppose
that T is an n-tournament for which I(Z) = k. Let V; = V|(T), 1=i<p(T), be as
in the definition of p = p(T) above, where the functional nctation will be used
when needed to emphasize the dependence on the tournament under considera-
tion. Let U, ={x € V, | x is dominated by every vertex in V;,,}. i~ i=p7—1. Then
U, # V, by definition of V,,,, 1<i<p-1. Note that no verte: in U; dominates
every vertex in V, — U,, as otherwise each vertex in V,,, can reach each vertex in
V; via a 1-path or a 2-path, a contradiction to the definitionof V;, |, I<i=p—-1.

Form an (n+ 1)-tournament T, by adjoining to T a new vertex z such that z
dominates 2xactly the vertices in

V.- U |1<sisp—1,ioddlUW,
where

W= V,, if pisodd
@, if pis even.

Now, z is a king of T,. For let x be any vertex of T which is not dominated by
z. If x is in U, for some odd i, 1 <i=<p—1, then as noted above, there is a vertex
in V;— U, on a 2-path from z 0 x. If x is in V, for some even i, 2<i=<p, then as
no vertex of V, contains every vertex in V,_,, there is some vertex in V,_, - U, _,
which is on a 2-path from z to x.

In addition, each vertex of V, is a king of T,. For, each vertex of V, is a king of
T, each vertex of U, UV, dominates z, and by the definition of U,, from each
vertex of V,— U, there is a 2-path to z which includes a vertex of V..

Note that from each vertex of V,, i even, to each vertex of V, ;~U,_, there is a
2-path using z, 2<i<p, ar d each vertex of V,,i even, dominates every vertex of
U,_,, 2<i<p. In particular, each vertex ot V, is a king of T;.

Consequently, {z}U V((TYU V(" e V(T)). If p(T) =2, clearly these two sets
are equai. if p(T)>2Z, then these two sets are equal by Lemma 5. Mareover, by
the previcus paragraph and Lemma 5, if p(T)>2, then

ViT) =V, (TIUV,(T), 1<sj=s{Ep-—Dh
anc if p is odd, V,.,,2(T))= V,(T). Hence,
p(T)={p(T} and NT)=k-1.

By the induction hypothesis there exists an all-kings ni-tournament W such
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that T, is a subtournament of W and
m=(n+1+I1T),).

So T is a subtournament of W and
m=mn+1)+k-1)=n+UT.

By induction and Theorem 6, the result follows.
The worst case in the previous theorem occurs when T is transitive.

Theorem 9. The smallest oruer of an all-kings tournament which contains the
transitive n-tournament is 2n.

Remark. If T has no transmitter, then it may be possible to add ‘a few’ vertices to
W constructed in the proof of Theorem 8 to obtain an all-kings tournament, thus
improving the upper bound in Corollary 7. Some facts about W that might prove
useful are: V, UU,_, dominates all of z,,..., z; the subtournament of W with
vertex set {z,,..., 2.} is transitive and z; dominates z; if and only if 1si<j<k;
every .-path or 2-path in W from any vertex of V to any vertex of V,UU,_, lies
entirely in T.

Acknowledgement

The author would like to acknowledge several helpiul comments of the referee
that improved ine exposition.

References

[1] ¥. Harary, R.Z. Norman and D. Cartwright. Structural Models: An Introduction to the Theory ot
irected Graphs (J. Wiley, New York, 1965) 294.

[2] E.G. Landau, On dominance relations and the structure of animal societies: 1. Effect of inherent
characteristics, Bull. Math. Biophys. 13 (1951) 1-19, I1. Some effects of possible socia! factors,
Bull. Math. Biophys. 13 (1951) 245-262, Hi. The condition for a score structure, Bull. Math.
Biophys. 15 (1957) 143-148.

[3] S.B. Maurer, The King Chicken Theorems, Math. Mag. 53 (1980) 67-80.

4] J.W. Moon, Solution to Problem 46", Math. Mag. 35 {1962’ 189.

151 L.W. Moon, Topics on Tournaments (Holt, Rinehart, and Winston, New York. 1968).

[6] K.B. Reid and L.W. Beineke, Tournaments, Chapter 7 in: L.W. Beineke and R. Wilson, eds.,
Selected Topics in Grap' (heory (Academic Press, New York, 1979).

[7] K.B. Reid. Tournaments .ith prescribed numbers of kings and serfs, Congressus Numerantium,
Vol. 29, Proc. [1th S.-E. Conf. Combinatorics, Graph Theory, and Computing (Utilitas Mathema-
tics, Winnipeg, 1980) 809-826.

[8] D.L. Silverman, Problem 463, Math. Mag. 35 (1962) 189,



