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Euler’s 1736 paper on the bridges of Königsberg is widely regarded as the earliest
contribution to graph theory—yet Euler’s solution made no mention of graphs. In this
paper we place Euler’s views on the Königsberg bridges problem in their historical
context, present his method of solution, and trace the development of the present-day
solution.

What Euler didn’t do
A well-known recreational puzzle concerns the bridges of Königsberg. It is claimed
that in the early eighteenth century the citizens of Königsberg used to spend their
Sunday afternoons walking around their beautiful city. The city itself consisted of
four land areas separated by branches of the river Pregel over which there were seven
bridges, as illustrated in Figure 1. The problem that the citizens set themselves was to

Figure 1. Königsberg
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walk around the city, crossing each of the seven bridges exactly once and, if possible,
returning to their starting point.

If you look in some books on recreational mathematics, or listen to some graph-
theorists who should know better, you will ‘learn’ that Leonhard Euler investigated
the Königsberg bridges problem by drawing a graph of the city, as in Figure 2, with
a vertex representing each of the four land areas and an edge representing each of the
seven bridges. The problem is then to find a trail in this graph that passes along each
edge just once.
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Figure 2. The Königsberg graph

But Euler didn’t draw the graph in Figure 2—graphs of this kind didn’t make their
first appearance until the second half of the nineteenth century. So what exactly did
Euler do?

Figure 3. Seventeenth-century Königsberg
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The Königsberg bridges problem
In 1254 the Teutonic knights founded the Prussian city of Königsberg (literally, king’s
mountain). With its strategic position on the river Pregel, it became a trading center
and an important medieval city. The river flowed around the island of Kneiphof (lit-
erally, pub yard) and divided the city into four regions connected by seven bridges:
Blacksmith’s bridge, Connecting bridge, High bridge, Green bridge, Honey bridge,
Merchant’s bridge, and Wooden bridge: Figure 3 shows a seventeenth-century map of
the city. Königsberg later became the capital of East Prussia and more recently became
the Russian city of Kaliningrad, while the river Pregel was renamed Pregolya.

In 1727 Leonhard Euler began working at the Academy of Sciences in St Peters-
burg. He presented a paper to his colleagues on 26 August 1735 on the solution of ‘a
problem relating to the geometry of position’: this was the Königsberg bridges prob-
lem. He also addressed the generalized problem: given any division of a river into
branches and any arrangement of bridges, is there a general method for determining
whether such a route exists?

In 1736 Euler wrote up his solution in his celebrated paper in the Commentarii
Academiae Scientiarum Imperialis Petropolitanae under the title ‘Solutio problema-
tis ad geometriam situs pertinentis’ [2]; Euler’s diagram of the Königsberg bridges
appears in Figure 4. Although dated 1736, Euler’s paper was not actually published
until 1741, and was later reprinted in the new edition of the Commentarii (Novi Acta
Commentarii . . . ) which appeared in 1752.

Figure 4. Diagram from Euler’s 1736 paper

A full English translation of this paper appears in several places—for example, in
[1] and [6]. The paper begins:

1. In addition to that branch of geometry which is concerned with distances, and which
has always received the greatest attention, there is another branch, hitherto almost un-
known, which Leibniz first mentioned, calling it the geometry of position [Geometriam
situs]. This branch is concerned only with the determination of position and its prop-
erties; it does not involve distances, nor calculations made with them. It has not yet
been satisfactorily determined what kinds of problem are relevant to this geometry of
position, or what methods should be used in solving them. Hence, when a problem was
recently mentioned which seemed geometrical but was so constructed that it did not re-
quire the measurement of distances, nor did calculation help at all, I had no doubt that it
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was concerned with the geometry of position—especially as its solution involved only
position, and no calculation was of any use. I have therefore decided to give here the
method which I have found for solving this problem, as an example of the geometry of
position.

2. The problem, which I am told is widely known, is as follows: in Königsberg . . .

This reference to Leibniz and the geometry of position dates back to 8 September
1679, when the mathematician and philosopher Gottfried Wilhelm Leibniz wrote to
Christiaan Huygens as follows [5]:

I am not content with algebra, in that it yields neither the shortest proofs nor the most
beautiful constructions of geometry. Consequently, in view of this, I consider that we
need yet another kind of analysis, geometric or linear, which deals directly with position,
as algebra deals with magnitudes . . .

Leibniz introduced the term analysis situs (or geometria situs), meaning the analysis
of situation or position, to introduce this new area of study. Although it is sometimes
claimed that Leibniz had vector analysis in mind when he coined this phrase (see, for
example, [8] and [11]), it was widely interpreted by his eighteenth-century followers as
referring to topics that we now consider ‘topological’—that is, geometrical in nature,
but with no reference to metrical ideas such as distance, length or angle.

Euler’s Königsberg letters
It is not known how Euler became aware of the Königsberg bridges problem. However,
as we shall see, three letters from the Archive Collection of the Academy of Sciences
in St Petersburg [3] shed some light on his interest in the problem (see also [10]).

Carl Leonhard Gottlieb Ehler was the mayor of Danzig in Prussia (now Gdansk in
Poland), some 80 miles west of Königsberg. He corresponded with Euler from 1735 to
1742, acting as intermediary for Heinrich Kühn, a local mathematics professor. Their
initial communication has not been recovered, but a letter of 9 March 1736 indicates
they had discussed the problem and its relation to the ‘calculus of position’:

You would render to me and our friend Kühn a most valuable service, putting us greatly
in your debt, most learned Sir, if you would send us the solution, which you know well,
to the problem of the seven Königsberg bridges, together with a proof. It would prove
to be an outstanding example of the calculus of position [Calculi Situs], worthy of your
great genius. I have added a sketch of the said bridges . . .

Euler replied to Ehler on 3 April 1736, outlining more clearly his own attitude to
the problem and its solution:

. . . Thus you see, most noble Sir, how this type of solution bears little relationship to
mathematics, and I do not understand why you expect a mathematician to produce it,
rather than anyone else, for the solution is based on reason alone, and its discovery does
not depend on any mathematical principle. Because of this, I do not know why even
questions which bear so little relationship to mathematics are solved more quickly by
mathematicians than by others. In the meantime, most noble Sir, you have assigned this
question to the geometry of position, but I am ignorant as to what this new discipline
involves, and as to which types of problem Leibniz and Wolff expected to see expressed
in this way . . .
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Figure 5. Ehler’s letter to Euler

Around the same time, on 13 March 1736, Euler wrote to Giovanni Marinoni, an Italian
mathematician and engineer who lived in Vienna and was Court Astronomer in the
court of Kaiser Leopold I. He introduced the problem as follows (see Figure 6):

A problem was posed to me about an island in the city of Königsberg, surrounded by
a river spanned by seven bridges, and I was asked whether someone could traverse the
separate bridges in a connected walk in such a way that each bridge is crossed only
once. I was informed that hitherto no-one had demonstrated the possibility of doing this,
or shown that it is impossible. This question is so banal, but seemed to me worthy of
attention in that geometry, nor algebra, nor even the art of counting was sufficient to
solve it. In view of this, it occurred to me to wonder whether it belonged to the geometry
of position [geometriam Situs], which Leibniz had once so much longed for. And so,
after some deliberation, I obtained a simple, yet completely established, rule with whose
help one can immediately decide for all examples of this kind, with any number of
bridges in any arrangement, whether such a round trip is possible, or not . . .
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Figure 6. Euler’s letter to Marinoni

Euler’s 1736 paper
Euler’s paper is divided into twenty-one numbered paragraphs, of which the first as-
cribes the problem to the geometry of position as we saw above, the next eight are
devoted to the solution of the Königsberg bridges problem itself, and the remainder
are concerned with the general problem. More specifically, paragraphs 2–21 deal with
the following topics (see also [12]):

Paragraph 2. Euler described the problem of the Königsberg bridges and its gen-
eralization: ‘whatever be the arrangement and division of the river into branches, and
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however many bridges there be, can one find out whether or not it is possible to cross
each bridge exactly once?’

Paragraph 3. In principle, the original problem could be solved exhaustively by
checking all possible paths, but Euler dismissed this as ‘laborious’ and impossible for
configurations with more bridges.

Paragraphs 4–7. The first simplification is to record paths by the land regions rather
than bridges. Using the notation in Figure 4, going south from Kneiphof would be
notated AB whether one used the Green Bridge or the Blacksmith’s Bridge. The final
path notation will need to include an adjacent A and B twice; the particular assignment
of bridges a and b is irrelevant. A path signified by n letters corresponds to crossing
n − 1 bridges, so a solution to the Königsberg problem requires an eight-letter path
with two adjacent A/B pairs, two adjacent A/C pairs, one adjacent A/D pair, etc.

Paragraph 8. What is the relation between the number of bridges connecting a land
mass and the number of times the corresponding letter occurs in the path? Euler devel-
oped the answer from a simpler example (see Figure 7). If there is an odd number k of
bridges, then the letter must appear (k + 1)/2 times.

Figure 7. A simple case

Paragraph 9. This is enough to establish the impossibility of the desired Königsberg
tour. Since Kneiphof is connected by five bridges, the path must contain three As.
Similarly, there must be two Bs, two Cs, and two Ds. In paragraph 14, Euler records
these data in a table.

region A B C D

bridges 5 3 3 3
frequency 3 2 2 2

Summing the final row gives nine required letters, but a path using each of the seven
bridges exactly once can have only eight letters. Thus there can be no Königsberg tour.

Paragraphs 10–12. Euler continued his analysis from paragraph 8: if there is an
even number k of bridges connecting a land mass, then the corresponding letter appears
k/2 + 1 times if the path begins in that region, and k/2 times otherwise.

Paragraphs 13–15. The general problem can now be addressed. To illustrate the
method Euler constructed an example with two islands, four rivers, and fifteen bridges
(see Figure 8).
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Figure 8. A more complicated example

This system has the following table, where an asterisk indicates a region with an
even number of bridges.

region A∗ B∗ C∗ D E F∗

bridges 8 4 4 3 5 6
frequency 4 2 2 2 3 3

The frequencies of the letters in a successful path are determined by the rules for even
and odd numbers of bridges, developed above. Since there can be only one initial
region, he records k/2 for the asterisked regions. If the frequency sum is one less
than the required number of letters, there is a path using each bridge exactly once that
begins in an asterisked region. If the frequency sum equals the required number of
letters, there is a path that begins in an unasterisked region. This latter possibility is
the case here: the frequency sum is 16, exactly the number of letters required for a path
using 15 bridges. Euler exhibited a particular path, including the bridges:

E a F b B c F d A e F f C g A h C i D k A m E n A p B o E l D.

Paragraph 16–19. Euler continued with a simpler technique, observing that:

. . . the number of bridges written next to the letters A, B, C , etc. together add up to
twice the total number of bridges. The reason for this is that, in the calculation where
every bridge leading to a given area is counted, each bridge is counted twice, once for
each of the two areas which it joins.

This is the earliest version known of what is now called the handshaking lemma. It
follows that in the bridge sum, there must be an even number of odd summands.

Paragraph 20. Euler stated his main conclusions:

If there are more than two areas to which an odd number of bridges lead, then such a
journey is impossible.
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If, however, the number of bridges is odd for exactly two areas, then the journey is
possible if it starts in either of these two areas.

If, finally, there are no areas to which an odd number of bridges lead, then the required
journey can be accomplished starting from any area.

Paragraph 21. Euler concluded by saying:

When it has been determined that such a journey can be made, one still has to find how
it should be arranged. For this I use the following rule: let those pairs of bridges which
lead from one area to another be mentally removed, thereby considerably reducing the
number of bridges; it is then an easy task to construct the required route across the
remaining bridges, and the bridges which have been removed will not significantly alter
the route found, as will become clear after a little thought. I do not therefore think it
worthwhile to give any further details concerning the finding of the routes.

Note that this final paragraph does not prove the existence of a journey when one is
possible, apparently because Euler did not consider it necessary. So Euler provided a
rigorous proof only for the first of the three conclusions. The first satisfactory proof
of the other two results did not appear until 1871, in a posthumous paper by Carl
Hierholzer (see [1] and [4]).

The modern solution
The approach mentioned in the first section developed through diagram-tracing puz-
zles discussed by Louis Poinsot [7] and others in the early-nineteenth century. The
object is to determine whether a figure can be drawn with a single stroke of the pen in
such a way that no edge is repeated. Considering the figure to be drawn as a graph, the
general conditions in Paragraph 20 take the following form:

If there are more than two vertices of odd degree, then such a drawing is impossible.

If, however, exactly two vertices have odd degree, then the drawing is possible if it starts
with either of these two vertices.

If, finally, there are no vertices of odd degree, then the required drawing can be accom-
plished starting from any vertex.

So the 4-vertex graph shown in Figure 2, with one vertex of degree 5 and three
vertices of degree 3, cannot be drawn with a single stroke of the pen so that no edge
is repeated. In contemporary terminology, we say that this graph is not Eulerian. The
arrangement of bridges in Figure 8 can be similarly represented by the graph in Fig-
ure 9, with six vertices and fifteen edges. Exactly two vertices (E and D) have odd
degree, so there is a drawing that starts at E and ends at D, as we saw above. This is
sometimes called an Eulerian trail.

However, it was some time until the connection was made between Euler’s work and
diagram-tracing puzzles. The ‘Königsberg graph’ of Figure 2 made its first appearance
in W. W. Rouse Ball’s Mathematical Recreations and Problems of Past and Present
Times [9] in 1892.

Background information, including English translations of the papers of Euler [2] and Hierholzer [4], can be

found in [1]; an English translation of Euler’s paper also appears in [6].
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Figure 9. The graph of the bridges in Figure 8
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If I feel unhappy, I do mathematics to become happy. If I am happy, I do mathe-
matics to keep happy. ——Alfréd Rényi

(Quoted in P. Turán, “The Work of Alfréd Rényi,” Matematikai Lapok 21 (1970)
199–210)
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