Set Theory Symbols

List of set symbols of set theory and probability.

Table of set theory symbols

Symbol	Symbol Name	Meaning / definition	Example
{ }	set	a collection of elements	$A = \{3,7,9,14\}, \\B = \{9,14,28\}$
	such that	so that	$\mathbf{A} = \{x \mid x \in \mathbb{R}, x < 0\}$
$A \cap B$	intersection	objects that belong to set A and set B	$A \cap B = \{9,14\}$
$\mathbf{A} \cup \mathbf{B}$	union	objects that belong to set A or set B	A \cup B = {3,7,9,14,28}
$\mathbf{A} \subseteq \mathbf{B}$	subset	subset has fewer elements or equal to the set	$\{9,14,28\} \subseteq \{9,14,28\}$
$A \subset B$	proper subset / strict subset	subset has fewer elements than the set	$\{9,14\} \subset \{9,14,28\}$
$A \not\subset B$	not subset	left set not a subset of right set	{9,66} ⊄ {9,14,28}
$A \supseteq B$	superset	set A has more elements or equal to the set B	$\{9,14,28\} \supseteq \{9,14,28\}$
$A \supset B$	proper superset / strict superset	set A has more elements than set B	$\{9,14,28\} \supset \{9,14\}$
$A \not\supset B$	not superset	set A is not a superset of set B	{9,14,28} ⊅ {9,66}
2 ^A	power set	all subsets of A	
$\mathcal{P}(A)$	power set	all subsets of A	
A = B	equality	both sets have the same members	A={3,9,14}, B={3,9,14}, A=B
A ^c	complement	all the objects that do not belong to set A	

$A \setminus B$	relative complement	objects that belong to A and not to B	$A = \{3,9,14\}, \\B = \{1,2,3\}, \\A \setminus B = \{9,14\}$
A - B	relative complement	objects that belong to A and not to B	$A = \{3,9,14\}, \\B = \{1,2,3\}, \\A - B = \{9,14\}$
ΑΔΒ	symmetric difference	objects that belong to A or B but not to their intersection	A = $\{3,9,14\},\$ B = $\{1,2,3\},\$ A Δ B = $\{1,2,9,14\}$
$A \ominus B$	symmetric difference	objects that belong to A or B but not to their intersection	$A = \{3,9,14\}, \\B = \{1,2,3\}, \\A \ominus B = \{1,2,9,14\}$
a∈A	element of	set membership	A={3,9,14}, $3 \in A$
x∉A	not element of	no set membership	A={3,9,14}, 1 ∉ A
(<i>a</i> , <i>b</i>)	ordered pair	collection of 2 elements	
A×B	cartesian product	set of all ordered pairs from A and B	
A	cardinality	the number of elements of set A	A={3,9,14}, A =3
#A	cardinality	the number of elements of set A	A={3,9,14}, #A=3
\aleph_0	aleph-null	infinite cardinality of natural numbers set	
\aleph_1	aleph-one	cardinality of countable ordinal numbers set	
Ø	empty set	Ø = { }	$C = \{ \emptyset \}$
U	universal set	set of all possible values	
\mathbb{N}_{0}	natural numbers / whole numbers set	$\mathbb{N}_0 = \{0, 1, 2, 3, 4,\}$	$0 \in \mathbb{N}_0$

	(with zero)		
\mathbb{N}_1	natural numbers / whole numbers set (without zero)	$\mathbb{N}_1 = \{1, 2, 3, 4, 5,\}$	$_{6}\in\mathbb{N}_{_{1}}$
\mathbb{Z}	integer numbers set	$\mathbb{Z} = \{\dots -3, -2, -1, 0, 1, 2, 3, \dots\}$	$-6 \in \mathbb{Z}$
Q	rational numbers set	$\mathbb{Q}_{=\{x \mid x=a/b, a,b \in \mathbb{Z}\}}$	$_{2/6} \in \mathbb{Q}$
\mathbb{R}	real numbers set	$\mathbb{R}_{=\{x \mid -\infty < x < \infty\}}$	$6.343434 \in \mathbb{R}$
\mathbb{C}	complex numbers set	$\mathbb{C}_{\substack{z \mid z=a+bi, -\\ \infty \le a \le \infty, -\infty \le b \le \infty}}$	$_{6+2i \in \mathbb{C}}$

Retrieved online from

http://www.stumbleupon.com/su/24JdZH/www.rapidtables.com/math/symbols/Set_Symbols.htm/ #