Set Theory Symbols

List of set symbols of set theory and probability.

Table of set theory symbols

Symbol	Symbol Name	Meaning / definition	Example
\{ \}	set	a collection of elements	$\begin{aligned} & A=\{3,7,9,14\}, \\ & B=\{9,14,28\} \end{aligned}$
1	such that	so that	$\mathrm{A}=\{x \mid x \in \mathbb{R}, x<0\}$
$A \cap B$	intersection	objects that belong to set A and set B	$A \cap B=\{9,14\}$
$A \cup B$	union	objects that belong to set A or set B	$A \cup B=\{3,7,9,14,28\}$
$\mathrm{A} \subseteq \mathrm{B}$	subset	subset has fewer elements or equal to the set	$\{9,14,28\} \subseteq\{9,14,28\}$
$\mathrm{A} \subset \mathrm{B}$	proper subset / strict subset	subset has fewer elements than the set	$\{9,14\} \subset\{9,14,28\}$
$\mathrm{A} \not \subset \mathrm{B}$	not subset	left set not a subset of right set	$\{9,66\} \not \subset\{9,14,28\}$
$\mathrm{A} \supseteq \mathrm{B}$	superset	set A has more elements or equal to the set B	$\{9,14,28\} \supseteq\{9,14,28\}$
$A \supset B$	proper superset/ strict superset	set A has more elements than set B	$\{9,14,28\} \supset\{9,14\}$
$A \not D B$	not superset	set A is not a superset of set B	$\{9,14,28\} \not D\{9,66\}$
$2^{\text {A }}$	power set	all subsets of A	
$\mathcal{P}(A)$	power set	all subsets of A	
$\mathrm{A}=\mathrm{B}$	equality	both sets have the same members	$\begin{aligned} & \mathrm{A}=\{3,9,14\}, \\ & \mathrm{B}=\{3,9,14\}, \\ & \mathrm{A}=\mathrm{B} \end{aligned}$
$A^{\text {c }}$	complement	all the objects that do not belong to set A	

$A \backslash B$	relative complement	objects that belong to A and not to B	$\begin{aligned} & A=\{3,9,14\}, \\ & B=\{1,2,3\}, \\ & A \backslash B=\{9,14\} \end{aligned}$
A - B	relative complement	objects that belong to A and not to B	$\begin{aligned} & A=\{3,9,14\}, \\ & B=\{1,2,3\}, \\ & A-B=\{9,14\} \end{aligned}$
$\mathrm{A} \Delta \mathrm{B}$	symmetric difference	objects that belong to A or B but not to their intersection	$\begin{aligned} & \mathrm{A}=\{3,9,14\}, \\ & \mathrm{B}=\{1,2,3\}, \\ & \mathrm{A} \Delta \mathrm{~B}=\{1,2,9,14\} \end{aligned}$
$\mathrm{A} \ominus \mathrm{B}$	symmetric difference	objects that belong to A or B but not to their intersection	$\begin{aligned} & A=\{3,9,14\}, \\ & B=\{1,2,3\}, \\ & A \ominus B=\{1,2,9,14\} \end{aligned}$
$a \in \mathrm{~A}$	element of	set membership	$\mathrm{A}=\{3,9,14\}, 3 \in \mathrm{~A}$
$x \notin \mathrm{~A}$	not element of	no set membership	$\mathrm{A}=\{3,9,14\}, 1 \notin \mathrm{~A}$
(a, b)	ordered pair	collection of 2 elements	
$A \times B$	cartesian product	set of all ordered pairs from A and B	
$\|\mathrm{A}\|$	cardinality	the number of elements of set A	$A=\{3,9,14\},\|A\|=3$
\# A	cardinality	the number of elements of set A	$A=\{3,9,14\}, \# A=3$
\aleph_{0}	aleph-null	infinite cardinality of natural numbers set	
\aleph_{1}	aleph-one	cardinality of countable ordinal numbers set	
\varnothing	empty set	$\emptyset=\{ \}$	$C=\{\varnothing\}$
U	universal set	set of all possible values	
\mathbb{N}_{0}	natural numbers / whole numbers set	$\mathbb{N}_{0}=\{0,1,2,3,4, \ldots\}$	$0 \in \mathbb{N}_{0}$

$\left.\begin{array}{|c|l|l|l|}\hline & \text { (with zero) } & & \\ \hline \mathbb{N}_{1} & \begin{array}{l}\text { natural numbers / } \\ \text { whole } \\ \text { numbers set } \\ \text { (without zero) }\end{array} & \mathbb{N}_{1}=\{1,2,3,4,5, \ldots\}\end{array}\right) 6 \in \mathbb{N}_{1}$.

Retrieved online from
http://www.stumbleupon.com/su/24JdZH/www.rapidtables.com/math/symbols/Set Symbols.htm/ \#

